
  

  

Abstract— Model compares T-Cell concentration and Viral 

Cell concentration over the course of two years with one year of 

HAART treatment and one year removed from HAART 

treatment. Results reflect in a step wise fashion, a increase in T-

Cell concentration while on treatment, decrease while off and a 

decrease in viral cell concentration, while on-treatment and 

increase while off.  

I. INTRODUCTION 

In the United States alone, 1.1 million people are infected 
with HIV.1 There are a variety of FDA-approved treatment 
drug classes on the market such as Nucleoside Reverse 
Transcriptase Inhibitors (NRTIs), non-NRTIs, Protease 
Inhibitors, and Highly Active Antiretroviral Therapy 
(HAART), just to name a few.2 Mathematical modeling 
based on ordinary differential equations (ODEs) have 
allowed researchers to better understand the dynamics of the 
disease, and to optimize treatment measures. In this study, a 
simplified model of an HIV infection in a single human 
patient is used, and the concentration of T cells and virus 
cells are analyzed after 1 year on-treatment of HAART and 1 
year off-treatment. 

 

II. PROCEDURE FOR PAPER SUBMISSION 

A. Use of MATLAB 

The simulation was conducted in MATLAB. Code is 
provided in the appendix. The function ode23s was used 
extensively with reduced tolerance for efficient run time. 
Logarithmic plots were used as opposed to regular plots to 
accurately model noise. 

B. Model Dynamics 

 This model uses a patient newly diagnosed with HIV, 

with initial conditions at the off-treatment infected steady 

state. Following the initial conditions, they are placed on 

treatment, and remain on treatment for one year. After one 

year, the patient goes off treatment and remains off 

treatment. During this two-year time period, measurements 

are made once per week of both the concentrations of the 

virus V and total T-cell count T+TI. Virus measurements 

were made using 1 mL of blood and have a log-normal error 

with a standard deviation of 0.2 log10. T-Cell measurements 

are made using flow cytometry using 1uL of blood and have 

Poisson noise with the expected count number equal to the 

concentration of T cells in the blood. In the model, these 

errors will be reflected as noise on the graph.  

 

 

 
 

 

III. MATH 

The mathematical model behind the basis of this 

experiment is as follows: 

 
This model is a set of differential equations that 

characterize the viral dynamics of a patient.  

 

A.  Maximum Likelihood Parameters 

Within the mathematical model provided, a set of 
parameters are used to accurately measure cell concentration. 
These parameters include: 

• s: regeneration rate of target cells 

• d: death rate of target cells 

• B: mass-action infection rate 

• u1: death rate of infected cells 

• kI: rate at which infected cells produce virus 

• c: death rate of free virus 

• L(t): rate at which quiescently infected cells “wake 
up” and become productively infected cells 

Based on previous research performed by Luo and group, 
the maximum likelihood parameters going into the 
mathematical model are as follows. 

• s = 270 cells/uL/day 

• d = 0.1 /day 

• B (off treatment) = 1.7*10 -6 mL/cells/day 

• B (on treatment) = 3.7*10 -7 mL/cells/day 

• u1 = 1/day 

• kI = 1*10 4 virions*uL/cells/mL/day 

• c = 23/day 

• L(t) = 1*10 -3 cells/uL/day 

These measurements vary widely from patient to patient, 
yet for the basis of this experiment, they are assumed to be 
uniform.  

Further on in the experiment, the value for s is optimized 
for the smallest sum-of-squares error. 
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B. Differential Equations 

 Given the mathematical model and maximum likelihood 

parameters, a set of differential equations were produced that 

reflect the concentration of uninfected target cells (T), the 

concentration of infected target cells (TI), and the population 

of the free virus (V). 

 

• Ṫ = s – dT -BVT 

• ṪI = BVT – u1TI + L(t) 

• V̇ = kITI - cV 

IV. RESULTS 

Both figures of T-Cell (1) and Virus (2) concentrations 
take the form of a stepwise shape. Since the initial conditions 
are set with beta as off treatment, the initial T-Cell 
Concentration is very low, and the initial viral concentration 
is very high.  

Following the start of treatment, T-Cell measurements 
increase to approximately 2700 cells/uL (relatively high) and 
remain at that level for the rest of the one year of treatment. 
The concentration of the virus remains rather low, sitting near 
to 0 cells/uL. This rate remains constant in its true state and is 
likely due to the body adapting to the treatment. With noise, 
it is observed that concentrations are sporadic, surrounding 
the step function of the true state.  

Once the patient goes off treatment, the inverse 
relationship occurs. That is, T-Cell concentration decreases to 
around 1500 cells/uL and Virus Cell concentration increases 
to approximately 6,000 cells/uL. This change in 
concentration occurs 40 days following going off treatment 
and is biologically discussed later in the discussion. 

 

Figure 1: T-Cell concentration (cells/uL) in blood with 1 year 
on-treatment, 1 year off-treatment. Poisson error noise is 
reflected by the stars along the true state step function.  

 

Figure 2: Virus concentration (cells/uL) in blood with 1 year 
on-treatment, 1 year off-treatment. Log-normal error is 
reflected by the stars along the true state step function. 

  

One simulation was conducted where s was allowed to 
vary from 1 to 1000 (see Appendix: sumOfSquares function). 
The function fmincon was used and the smallest sum-of-
squares error between the measured data and noise free 
values was recorded. Although s was varying, all other 
parameters were set to their true values. An optimal s of 270 
was discovered following the simulation. This s produced the 
smallest sum-of-squares error. The code ran for 
approximately 3 hours due to the iterations of ode23s.  

 

 

V.  DISCUSSION 

The introduction of combination therapy, known as 

HAART, has been linked to reductions in the morbidity and 

mortality associated with HIV-1 infection and AIDS.3 This 

medication suppresses viral replication and dramatically 

reduces HIV-1 viral load to below the limits of detection, as 

shown in figure 2.4 This leads to a significant reconstruction 

of the immune system, as reflected in the increase in 

circulating CD4+ T-lymphocytes, as shown in figure 1.5,6,7 

HAART reflects the pattern of combination therapy using 

three antiretroviral agents aimed towards two distinct 

molecular targets. This biological strategy is the underlying 

basis for preventing the evolution of drug resistance. 

 

One can speculate the pattern of T-Cell concentration to 

gradually increase while on-treatment and level off when 

taken off treatment and for virus concentrations to gradually 

decrease while on-treatment and level off when taken off 

treatment. Yet in this model, both concentrations take the 

form of a step function. This can be contributed to the 

differential equations used to model the concentrations. The 

changing value of beta for on and off treatment causes the 

corresponding spike and drop within the plot.  

 



  

In biological terms, during the initial 50 days of treatment, 

the body is attempting to adjust to the HAART therapy and 

achieve homeostasis. Following the first 50 days, 

concentrations level out, suggesting the body has achieved 

homeostasis while on therapy, and the immune system is 

slowly rebuilding. Once the patient goes off-treatment, it can 

be assumed that the immune system, which was slowly 

strengthening while on HAART, becomes overwhelmed by 

the flux of viral cells and the number of healthy T-Cells 

begins to decrease, and the number of infected T-Cells and 

virus begins to decrease, and once the body achieves 

homeostasis, the numbers begin to plateau.  

 

By just observing the set of differential equations and the 

beta values, it is worth noting that on-treatment beta is a 

power 10 smaller than off-treatment beta. Plugging these 

values into the differential equation yields a smaller rate of 

healthy T-cell growth and a higher rate of infected T-cell 

growth while on-treatment, and the inverse relationship 

while off-treatment. This mathematical note aligns with the 

step shown in figures 1 and 2 and can be used to explain the 

mathematical rationale behind the shape of the graph. 

 

   

  

VI. CONCLUSION 

This simplified model provided as a good analysis of the 

effectiveness of HAART treatment on HIV patients. By 

utilizing differential equations to represent disease 

dynamics, it was discovered that with one year on-treatment, 

there was an increase in T-Cell concentration and a decrease 

in viral cell concentration to zero, and with one year off-

treatment, there was an increase in viral-cell concentration 

and a decrease in T-Cell concentration. Further research 

must be conducted to determine to efficacy of this model 

with other diseases, such as cancer dynamics. 

 

 

APPENDIX 

A. Code for Main Script 

%Maximum Likelihood Estimates for 

Parameters(units are commented) 

 
global s d bOn bOff u1 kI c L tspan 
s=270;              %cells/uL/day 
d=0.1;              %/day 
bOff=1.7e-6;         %mL/cells/day 
bOn=3.7e-7;        %mL/cells/day 
u1=1;               %/day 
kI=1e4;             

%virions*uL/cells/mL/day 
c=23;               %/day 
L=1e-3;             %cells/uL/day 

tspan = [0:7:730];  %span of 2 years in 

weekly increments 

  

  
%Calculating initial conditions (bOff) 
syms T TI V 
Tp = s - d*T - bOff*V*T; 
TIp = bOff*V*T - u1*TI + L; 
Vp = kI*TI - c*V; 
[T TI V] = solve([Tp==0, TIp==0, Vp==0], 

[T, TI, V]); 
x1 = eval(T); 
x2 = eval(TI); 
x3 = eval(V); 
initconds=[double(x1(2)), double(x2(2)), 

double(x3(2))]; 
  

 
%Solves the ODEs for concentrations at 

each time point 
opts = odeset('RelTol',1e-3); 
[t,x] = 

ode23s(@odeConc,tspan,initconds',opts); 
  

 
%To be used in sumOfSquares Function  
global array1 
array1=x; 

  
totalTCell = (x(:,1)+x(:,2)); 
totalVirus = x(:,3); 
noiseVirus = 

lognrnd(log(totalVirus),0.2*log(10)); 
noiseTCell = poissrnd(totalTCell); 

  
 

%Graphs 
figure 
semilogy 

(tspan,totalTCell,'LineWidth',2) 
hold on 
semilogy (tspan,noiseTCell, '*') 
legend('True State','With Noise') 
title('T-Cell Concentration (cells/uL) 

in Blood with 1 Year Treatment, 1 Year 

No Treatment') 
xlabel('Time (Days)') 
ylabel('T-Cell Concentration 

(cells/uL)') 
hold off 

  
figure 
semilogy (tspan, 

totalVirus,'LineWidth',2) 
hold on 
semilogy (tspan, (noiseVirus), '*') 
legend('True State','With Noise') 



  

title('Virus Concentration (cells/uL) in 

Blood with 1 Year Treatment, 1 Year No 

Treatment') 
xlabel('Time (Days)') 
ylabel('Concentration (cells/mL)') 
hold off 

  
%Optimal S calculations given 

sumOfSquares function: optimalS=270 
optimalS=fmincon(@sumOfSquares,0,1,1000) 

 

 

 

B. Code for odeConc Function (differential equations) 

function odes = odeConc(t,xp,y0) 
 

global s d bOn bOff u1 kI c L 

 
%Accounts for on-treatement and off 

treatment beta values 
if t<366 
    B=bOn; 
else 
    B=bOff; 
end 

  
T=xp(1); T1=xp(2); V=xp(3); 
Tp = vpa(s-(d*T)-(B*V*T),4); 
TIp = vpa(B*V*T - u1*T1 + L,4); 
Vp = vpa(kI*T1 - c*V,4); 
odes = [double(Tp); double(TIp); 

double(Vp)]; 

  
end 

 

 

C. Code for sumOfSquares Function 

 
function [cost] = sumOfSquares(sNew) 
    global s d bOn u1 kI c L tspan 

array1 

 
    s=sNew; 
 

    syms T TI V 
    Tp = s - d*T - bOn*V*T; 
    TIp = bOn*V*T - u1*TI + L; 
    Vp = kI*TI - c*V; 
    [T TI V] = solve([Tp==0, TIp==0, 

Vp==0], [T, TI, V]); 
    x1 = eval(T); 
    x2 = eval(TI); 
    x3 = eval(V); 
    initconds=[double(x1(2)), 

double(x2(2)), double(x3(2))]; 
 

 

 

  
 

    %Solves the ODEs for concentrations 

at each time point 

 
    opts = odeset('RelTol',1e-3); 
    [t1,array2] = 

ode23s(@odeConc,tspan,initconds',opts); 

     
    count=0; 
    for i = [1:1:length(tspan)] 
        sOs=(array2(i)-array1(i))^2; 
        count=sOs+count; 
    end 
    cost=count; 
end 
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